目的 探讨长链非编码RNA H19(LncRNA H19)在他莫昔芬治疗失败的乳腺癌细胞中的表达情况,并分析其对细胞侵袭能力的影响。方法 通过荧光定量PCR检测LncRNA H19在亲本细胞MCF-7W和他莫昔芬耐药细胞MCF-7R的表达水平,进一步使用siRNA干扰技术探讨LncRNA H19的生物学功能。通过转染siRNA H19来下调LncRNA H19的表达,以空载体和阴性对照组为对照组,荧光定量PCR检测转染效率和转染前后表皮间质转化相关转录因子Snail-2的表达水平变化。用Transwell法评估下调LncRNA H19表达后对MCF-7R细胞侵袭能力的影响。结果 与MCF-7W细胞相比,MCF-7R细胞中H19lncRNA呈现高水平表达状态。且MCF-7R中EMT相关基因Snail2的表达均明显高于MCF-7W细胞株。siRNA H19转染MCF-7R细胞24 h后, LncRNA H19和Snail 2 mRNA表达水平均明显下调(P<0.01)。Transwell实验显示,通过转染siRNA H19下调LncRNA H19表达可抑制细胞的侵袭能力(P<0.01)。结论 LncRNA H19在他莫昔芬耐药乳腺癌细胞中高表达,而下调其表达可减弱耐他莫昔芬乳腺癌细胞的侵袭能力,H19成为未来治疗耐他莫昔芬乳腺癌转移的药物靶点。
Abstract
OBJECTIVE To investigate the expression profile of long non-coding RNA H19 (LncRNA H19) in tamoxifen-resistant breast cancer cell lines, and to study its biological functions on cell invasion. METHODS Quantitative reverse-transcription PCR(Q-PCR) was performed to detect the expression of LncRNA H19 in MCF-7W and MCF-7R cells. To further explore its biological function, RNA interference was applied. siRNA H19 was transfected to down-regulate H19 expression, and transfection efficiency was evaluated by Q-PCR. The epidermal mesenchymal transition-related transcription gene Snail 2 was also evaluated by Q-PCR. Transwell assay was performed to evaluate the effect of H19 expression on invasion potential of MCF-7R cells. RESULTS Compared with MCF-7W cells, MCF-7R cells exhibit a relatively high expression of lncRNA H19 and Snail2. LncRNA H19 expression was down-regulated in MCF-7R after transfection of siRNA H19 for 24 h. Snail 2 mRNA expression was significantly inhibited after down regulating H19 expression (P<0.01). Transwell assay indicated that inhibition of LncRNA H19 by siRNA H19 could repress cell invasion (P<0.01). CONCLUSION The expression of LncRNA H19 is significantly up-regulated in MCF-7R, and its downregulation attenuated the invasion behavior and related gene expression of tamoxifen-resistant breast cancer cell. H19 may be a drug treatment target of tamoxifen-resistant breast cancer metastasis.
关键词
长链非编码RNA H19 /
侵袭 /
表皮间质转化
{{custom_keyword}} /
Key words
long noncoding RNA H19 /
invasion /
epidermal-mesenchymal transition
{{custom_keyword}} /
中图分类号:
R965
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] DAI M, REN J S, LI N, et al. Estimation and prediction on cancer related incidence and mortality in China2008[J]. Chin J Epidemol, 2012, 33(1): 57-61.
[2] OSBORNE C K, BOLDT D H, CLARK G M, et al. Effects of tamoxifen on human breast cancer cell cycle kinetics: accumulation of cells in early G1 phase[J]. Cancer Res, 1983, 43(8):3583-3585.
[3] RING A, DOWSETT M. Mechanisms of tamoxifen resistance[J]. Endocr Relat Cancer, 2004, 11(4): 643-658.
[4] ZAVADIL J, HALEY J, KALLURI R, et al. Epithelial-mesenchymal transition[J]. Cancer Res, 2008,68(23):9574-9577.
[5] HANAHAN D, WEINBERG R A. Hall marks of cancer: the next generation[J]. Cell, 2011, 144(5): 646-667.
[6] LEE M Y, C Y, CHOU M J, et al. Epithelial-mesenchymal transition in cervical cancer: correlation with tumor progression, epidermal growth factor receptor overexpression, and snail up-regulation[J]. Clin Cancer Res,2008,14(15):4743-4750.
[7] SCHEEL C, WEINBERG R A. Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links [J]. Semin Cancer Biol, 2012, 22(5-6):396-403.
[8] HU P, YANG J, HOU Y, et al. LncRNA expression signatures of twist-inducedepithelial-to-mesenchymal transition in MCF10A cells[J]. Cell Signal, 2014, 26(1):83-93.
[9] YANG J, WEINBERG R A. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis[J]. Dev Cell,2008,14(6): 818-829.
[10] DE CRAENE B, BERX G. Regulatory networks defining EMT during cancer initiation and progression[J]. Nat Rev Cancer, 2013,13(2):97-110.
[11] CHEN J, WANG T, ZHOU Y C, et al. Aquaporin 3 promotes epithelial-mesenchymal transition in gastric cancer[J]. J Exp Clin Cancer Res, 2014,33:38-47.
[12] SUN H, WANG G, PENG Y, et al. H19 lncRNA mediates 17β-estradiol-induced cell proliferation in MCF-7 breast cancer cells[J]. Oncology Reports, 2015, 33(6):3045-3052.
[13] HU P, YANG J, HOU Y, et al. LncRNA expression signatures of twist-inducedepithelial-to-mesenchymal transition in MCF10A cells[J]. Cell Signal, 2014, 26(1):83-93.
[14] YU M, BARDIA A, WITTNER B S, et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition[J]. Science, 2013, 339(6119):580-584.
[15] GUNASINGHE N P, WELLS A, ERICK W, et al. Mesenchymal-epithelial transition (MET) as a mechanism for metastatic colonisation in breast cancer[J]. Cancer Metastasis Rev, 2012, 31(3-4):469-478.
[16] LOTTIN S, ADRIAENSSENS E, DUPRESSOIR T, et al. Overexpression of an ectopic H19 gene enhances the tumorigenic properties of breast cancer cells[J]. Carcinogenesis, 2002, 23(11): 1885-1895.
[17] OHANA P, KOPF E, BIBI O, et al. The expression of the H19 gene and its function in human bladder carcinoma cell lines[J]. FEBS Lett, 1999, 454(1-2):81-84.
[18] LUO M, LI Z, WANG W, et al. Long non-coding RNA H19 increases bladder cancer metastasis by associating with EZH2 and inhibiting E-cadherin expression[J]. Cancer Lett, 2013, 33(2):213-221.
[19] MATOUK I J, RAVEH E, ABUL-LAIL R, et al. Oncofetal H19 RNA promotes tumor metastasis[J]. Biochim Biophys Acta, 2014, 1843(7):1414-1426.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金资助项目(81403021);福建省卫生与计划生育委员会医学创新课题资助项目(2014-CX-5);福建省立医院优秀青年培养项目(2014YNQN02)
{{custom_fund}}